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S U M M A R Y  
The equations of motion for an idealised vehicle are derived by the use of Lagrange's method. Expressions for those 
variables which affect the forces applied to the vehicle are derived in terms of the vehicle motion parameters. Extensions 
to the model and its particular usefulness are considered.. 

1. Introduction. 

The analysis of vehicle handling motions has progressed to the stage when detailed represen- 
tation of vehicles with respect to these motions can be attempted [1], [2],[3], [4], 1-5 i. 

A particular difficulty arising in this task is in representing the suspension system, which, 
under some circumstances, can influence the vehicle motions considerably. 

This paper describes the development of a mathematical model of a vehicle in which all 
six degrees of freedom of the body are allowed, and in which the lateral kinematic properties 
of the suspension system are included in a quite general way. The usefulness of the model in 
allowing a study of certain types of motion which previously have not been studied analytically 
is explained, and the possibility of further developing the model to include the effects of tyre 
flexibilities, and of a non-fiat road surface is indicated. 

2. Notation 

Ms 
mu 

/,5 

C X N S  

Ixo 
I,u 
Izu 
a 

b 
t 

tof, tot  
R 
ho 
Iu 
61, 62, 63, 64 

vehicle sprung mass 
unsprung mass per wheel 
body moment of inertia about OX 
body moment of inertia about OY 
body moment of inertia about OZ 
product of inertia of body with respect to OX, OZ. 
cambering moment of inertia of each unsprung mass 
polar moment of inertia of each unsprung mass 
yawing moment of inertia of each unsprung mass 
distance from O to plane of front suspension 
distance from O to plane of rear suspension 
lateral distance from O to each wheel centre 
values of t at front and rear respectively for vehicle at rest 
wheel radius 
value of (-z0) for vehicle at rest 
unsprung mass inertia approximately equal to Ixu, l~u, Iru/2 
road wheel steer angles 
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oi, oi, o;, ok 
t t 

OOf, ~Or 

kl, k2, k3, k4 
kf, k r 
/-/e,/-/r 
Alf, Alr 
Y'I, Y'2, Y'3, Y'4 
Oy'a 8y'z @'3 @'4 
60 '  00 '  00 '  00 
ool ool oo; ~o~ 

00 60 00 00 
Oll Olz Ol 3 O14 
80' 00' 80' 80 
05r 
00 
Oy] 8y i By; 8yk 
8 z '  8z '  8z '  Oz 
ool 8oi 80; oo~ 
8z '  8 z '  Oz' 8z 

811 Ol2 Ola 814 
Oz' Oz' Oz' 8z 
05r 
8z 
Oy'f 80'f Ol'f Oy'f 00'f ?lf 
00'  80 '  89' 8z'  Oz ' Oz 
8y'~ 00'~ OI~ 8y'~ ~0'~ ~lr 
0~o' 00 ' 80' Oz ' Oz ' 8z 
v 
7 
0~1~ 0~2, (Z3~ O~ 4 

6p 
O' 

0 

ox~ 
orl 
Xo, Yo, Zo 
:t1,~1 
2,~,~ 
p, q, r 
0 ,0 ,~  

t t t ! x~, xl, x;, x~ 
Y;,Y~,Y~,Y~ 
zl, z'~, z;, z'4 
Xw, gw, Zw 
Lw, Mw, Nw 
T 
T~ 

castor angle (normally positive) 
wheel camber angles 
starboard wheel camber angles, front and rear respectively for the 
vehicle at rest 
spring rates corresponding to each unsprung mass 
front and rear spring rates 
front and rear damper coefficients 
front and rear spring compressions for the stationary vehicle 
lateral tyre displacement with respect to OX 1 for each wheel 

lateral tyre movement with body roll for each wheel 

wheel camber changes with body roll 

spring-damper length changes with body roll 

rear wheel steer rate with body roll 

lateral tyre movement with vertical body movement 

wheel camber changes with vertical body movement 

spring-damper length change s with vertical body movement 

starboard rear wheel steer rate with vertical body movement 

starboard front wheel derivatives for the stationary vehicle 

starboard rear wheel derivatives for the stationary vehicle 

wind velocity 
angle between wind velocity vector and O'Xo axis 
tyre slip angles 
virtual displacement 
origin in the road surface tbr earth-centred "fixed" coordinate 
axes O'Xo YoZo 
origin for the body-centred axes OXYZ at the mass centre of the 
vehicle body 
horizontal axis at ~ to O'Xo 
horizontal axis at ~ to O'Yo 
coordinates of 0 in O'X o YoZo system 
velocities of 0 along OX1, 0 I71 
velocities of 0 along OX, 0 Y, OZ 
body angular velocities about OX, OY, OZ 
body roll, pitch, and yaw angles (fig. 1) 
longitudinal tyre forces 
lateral tyre forces 
vertical tyre forces 
aerodynamic forces 
aerodynamic moments 
system kinetic energy 
sprung mass kinetic energy 
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F 
V 
(D1, 0)2, 0)3, 0)4 

unsprung mass kinetic energy 
dissipative function 
potential function 
wheel rotational velocities 

3. Physical Description of Model 

The vehicle is considered to consist of a rigid body with a longitudinal plane of symmetry, 
joined by perfectly stiff links to the wheel assemblies. These assemblies are assumed to be light 
in comparison with the body. The wheels are assumed to be rigid discs, to be following a flat 
road surface, and to rotate, camber, steer, and move laterally, with respect to the body, in a 
realistic manner described by suspension derivatives [6]. The roll, pitch, and bounce motions 
of the body are assumed to be small. 

At the centre of mass of the body lies the origin O of the axes OX YZ, which moves with 
the body. When the vehicle is in its rest position, OX and OY are horizontal, OX pointing 
forwards and O Y to the right, and OZ is vertically downwards. The general position of these 
axis is described with reference to a right-handed, orthogonal, earth-centred axis set O'X o YoZo, 
in which O' is in the road surface with O'Zo vertically downwards. The position of the vehicle 
body is defined by the coordinates of O with respect to the "fixed" axes Xo, Yo, Zo, and rotations 
q~, O, O as defined in Fig. 1. 

X2,X , 

.0i\. 

\ 
\ ,  

/ 

/ 

J 

Vo 

0 

/ 

Zo,Z, 

/ 
/ 

/ x~ 
fZo 

Figure 1. Axis systems, displacements, and angular velocities of vehicle body. 

4. Development of the Equations of Motion 

Following Pacejka [1], the method of Lagrange is used to derive the equations of motion. 
This method requires the use of coordinates sufficient to define the position of the system 
in space. In this case, the coordinates are taken to be the coordinates of O, (Xo, Yo, Zo), and the 
three angles q~, 0, 0, from Fig. 1, which define the orientation of the vehicle body with respect 
to the fixed axes O'XoYoZ o. 

Lagrange's equation is applied: 

d O/iT\ ~T ~F 3V 
d5 e 
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where q represents the above six coordinates in turn, and Q represents the appropriate external- 
ly-applied "generalised" force, [7]. Expressions for T, F, and V in terms of the six coordinates 
are required. 

Kinetic energy 

T =  T~+ T~ 

rs � 8 9  ~ 2 , 2 ~ 2 = yI~s p + -~I~ q + yI~ r - C=~ rp 

giving 

c~T~ = Ms2 c~T~ = Ixsp-Cxz~r 
82 Op 

aT~ c~T~ 
a~ = Ms.~ aq - Iysq (1) 

or~ a~ 
- Me - l~r-C=~p 

0~ ~T~ 
The required terms 820 0x ~ etc. are formed as 

aT~ 0Ts 82 aTs 0~ aT~ 0~ aT~ 
620 82 820 + 09 820 + 0~ 820 + ~p 

ap ors aq aT~ & + - - - - + - - - -  
02 o Oq 02 o t?r 02 o 

etc. 

2, 1~, 2, p, q, and r, are therefore required as functions of 20, 17o, 2o, ~b, 0, ~,, etc. 
Regarding ~o, 0, ~b, 0, (~, 0, ~o and 2, as small quantities and replacing cos ~o by ( 1 -  ~o2/2), 

sin ~o by ~o, cos 0 by (1 - 02/2), and sin 0 by 0, resolving linear velocities in Fig. 1 and omitting 
3rd and higher order terms gives: 

2 = (1 - 02/2) cos 02  o + (1 - 02/2) sin ~'Yo - 020 

= [ -  (1 - (p2/2) sin O + (pO cos O] 20 + [(1 q)2/2)cos O + q~O sin O] 3~o + CP~o (2) 

= [q) sin O+O cos ~ ] 2 o +  [-q~ cos ~ + 0  sin ~,]yo+ ( 1 -  (p2/2-02/2)~o 

and resolving angular velocities: 

p =  , ~ -  04,,  

q = 0 + qo~ (3) 

r = - (pO + ~(1 - q~2/2- 02/2) 

Subsequently omitting second and higher order terms, we have, from (2)" 

02 
- - = 0  &p 

82 
- 0 cos ~ 2 o -  0 sin ~kpo- Zo 

80 

62 
- s i n  ~ 2 o  + c o s  ~3~o 

~);' = (~o sin O + 0  cos ~/')2o + (-q~ cos 0 + 0  sin ~)29o+eo Oq~ 

00 = q~ cos ~/,2 o + ~o sin 03~o 
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ay 
- cos 4`20- sin 4`)~o 

o4  ̀
a2 

- sin 4`2 o - cos 4`Yo - ~O2o 
a~o 

02 
- -  = cos 4`2 o + sin 4 ` Y o -  02o 
00 

0~ 
O~ = (qo cos 4 ` - 0  sin 4,)20+ ((p sin 4`+0 cos 4`)Yo 

and from (3)" 

Op 
m = O ~  

3q~ 

s = - o ,  ao 

Op 
- -  ~ O ,  

04  ̀
also from (2): 

02 
= COS 4` , 

~2o 

02 
= s i n  4 ` ,  

02 
- -  O ,  

02o 

and from (3): 

Op 
- - =  1,  a~ 

Op 
~ ~ O ,  
ao 

Op 

Oq _ ~ ,  

aq 
- - 0 ~  

O0 

Oq 
- - 0 ,  

04  ̀

Or _ O-q,4, 
&o 

Or 
- 0 4 ,  

ao 

t~r 

04  ̀

Oy O2 
- s i n  4 ` ,  

020 02 o 

Oy 02 
- -  C O S  4 `  , 

aYo aYo 
ay 02 
020 - ~ ,  02 ~ 

(4) 

(5) 

= ~o sin 4` + 0 cos 4` 

= - 9  cos 4` + 0 sin 4` (6) 

- - 1  

Oq Or 
- - = 0 ,  - - = 0  

Oq Or 
--~ : 1 --~ = - rp  (7) 
00 ' 00 

0q 0r 
04  ̀ 04  ̀ ~o, 04  ̀

and 2, ]), 2, p, q, and r, are not functions of Xo, Yo, Zo. Nor  are p, q, and r, functions of 2o, 1~o, 2o. 
Thus, using (1): 

aT~ aT~ aT~ 
ax~-Oyo aZo o (8) 

Then, from (1), (4), and (5): 

Ors 
aV = I,s ~4, 2 -  i~s 4,{~4, + 0) 

0T~ = Ix~ ~,(0~, - qb) - I~s 0~ 2 + Cx~ ~2 (9) 
00 

a < _  o 
04  ̀
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Thus 

Again, from (1), (6), and (7): 

aZ aZ aZ 
a~o = Ms'x~ a.,fo - Ms)~  a2o MsZ~ 

a<~ = Z.s (~o-o~)-C=s4 ,  ars z , , s ( o - ~ , ) - i z s q , ~  -~  

a_ 
I ~ 1  = Ms~o  

dt \~2o] 

dt \a) d 

d5 \0r = Ix~(O-O~-O$)-C=J, 

d5 \ ao]  = Zys(O- ~o4, - ~o;~) - lzs(~O;~ + ~o~) 

\ ee l  

(lO) 

The centres of mass of the wheel assemblies are taken to be at the wheel centres. Their 
velocities result from the forwards, sideways, and yawing motions of the sprung mass in the 
.horizontal plane, and from the vertical, pitching, and rolling motions of the sprung mass 
through the suspension kinematics. The velocity components for each unsprung mass are 
given on the next page. 

Now, because the vertical movement of the sprung mass centre of gravity will be small com- 
pared with its height from the ground in the static condition, Zo can be replaced by - ho. Also, 
O(R - ho) will be small compared with 21, and can be ignored. Further, 

t I = t o f +  (Z O-a0) + R -~z )  + q~ \acp ?q~/l 

with similar expressions for t2, t3, and t 4. In each case, the terms added to to will be small com- 
pared with to, so that we can replace tl and t 2 by tof , and t a and t 4 by to,. 

Also 

21 = 2o cos $ + 3)0 sin ~k 

and (12) 

)1 = -Xo sin ~k+)o cos 

giving: 

821 8~1 
- cos ~ ,  - sin 

0~o a)o 

a)l a)~ _ sin ~ = cos 
82o ' d)o 
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starboard port 

225 

forwards 
front 

rear 

x l - h ~ - O ( R  +zo) 

21-t3(k-O(R + zo) 

21 + t2~-  O(R + Zo) 

21 q- t4~l - -  O(R + Zo) 

lateral 

front 

rear 

I ' 8 ' 
Ya+a~s+(~~ ~z + &] 

(Syl a~oi_~- ++ \ N  + R-~-j 

(~z 8q6 ~ ~l-b~+(~o+bO) + R W , I  

+• 
\-~ + R 84o] 

Yl -~ a@ ~- (Zo--aO)( ~Y~ "~- R cq)t2-~ 
k oz o-Z-Z] 

Y l  - -  b ~  + (20 + vz  + ~ - z ]  

\8~o + R-~d] 

(11) 

cambering 

front 

rear 

(2o- aO) a~i a~'~ 

(20 + bO) aq)'3 8(0'3 
~ ;  + 0 8- ff 

(2o- aO) a~ol a~oA~ -~-+0 a~ 

(20 + bO) a~', a~', 

rotational 
all (forward velocity at each wheel centre)/R 

yawing 
all ~b 

(Note that the yawing velocity of the front wheels due to steering is ignored for the purposes 
of computing the kinetic energy). 

a0 - -  - sin r r 

ay, 
ag, - - cos r  sin SYo- 

(13) 
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Thus" 

 =ub 
+ (~, + tof0) 2 + {~ 

+a~+(2o_aO)(Oy] 0(o~ (Oy] R 0q~])~ z 
\~z  + R ~-z] + (o \&,o + ~o/J  

t o-aOt(  + = ; + + 

~-z + (~ &p j + (2~ -aO) ~zz + 49 

1 2 + :Ir.(co~ +col)+/~ur ~ 

+�89 2 t - - tore)2+ 1-b(h+(2o+bO) + R + (o + R 

+ (21 d- tOrl~) 2 d- 1 --  b e  + (20 + bO) ~Y'4 + Oz ) + (o \ ~  + R Oz/I J 

+ �89 (~o + bO)" ~-z~~ + 4) a~~ } + eo + bO) ~ -  z + 4~ 

+ �89 u(co~ +co ]) +I~u~ 2 . (14) 

It can also be reasonably assumed that/=u =/~u = t f ir ,  = I~, and that the suspension derivative 
values are always those applicable to the static, symmetrical case. 

In this case: 

#y'~ ay~ Oy~ 

Oz #z Oz 
say, 

Oz 0z 0z say, 

~yl 0yh 0y~ 
0~o 0(o &p say, 

0(p &p #(p say, 

Ol 1 Ol 2 t31f 
Oz Oz Oz say, 

~11 012 Olr 
&p ~q) ~q) say, 

with similar relations for the rear suspension. Also: 

053 064 06r 
0(p 0q~ Oq~ say, 

~53 064 05 r 

0z 0z 0z 
say, 

Then 

aT. 
- 4mull 
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COT~ _ Y'+(a-b)O+(~ (gz + ~z + R + E 2m. I gy'  9y, pf 

9Tu = 2mu ~o-aO) (COY'f + R + (2o+bO) + R 
9~o p_ \gz 9~ ) \77z 9z ) j 

B u t  

+ 2Iu I(2o-aO) ( ~ ) 2  + (~o +bO) (gP;] 2] 
\gz]  _J 

CO T~ [(gH\ 
_ 2 , ~  

94o L\cop) \aN J 
COTu ~ aO) (gy'e 9Pf~ e (@; R COP:) e] 
COO - 2mu a(z~ , \ ~zz + R COz ) + b(2~ + bO) + 

" @z coz) 

+ 2Iu I-a(~o-aO)(~-)2+ b(zo + bO)(COp~2] 
\gz)  J 

CO~- = m~ to2rr 91 .q-ad+~b \~-  + R 9pJJ 

+2t l r~ -2b  9 , - b ~ + O  ( 9s' + R +4Iu~ 
\gp 9p )1/ 

COT~ COTu CO2, COTu aYl COT~ COT./f r 
CO2~ - CO2~ CO2o + CO3)~ CO2o - cos r ~-1 sin r 

and om 

COT u 0 r  u 99r 1 9T  u 9yl  9T  u 9T  u 
- 92a COYo + 991 990 - sin O ~ l  + cos 0 ~  990 

giving 

9Tu 9,: (cop  
CO2o + ~ + R\&p 

and 

I "CO '~,. ~('tO ~coYtl" k(COPf -i- 9(i0;~ "f ~COp)j] 990COTu _ 4mu3) ~ +2mucos r a-b,~+(o "~'.Y~f + + R_9p 

using (14). Also: 

9T= 
�9 _ 2mur 2 2 41~ tof + t0r) + 9~ 

-t- 2mu(79 [ (COYf COPf~ ' b (COY'r COP'r~] 
a \ ~  + R cop/# \9p + R 9p)fl 

+2mu(a-b)(-2 o sin 0+9o cos ~k) 
Therefore : 

d 9< [2 (COP~ 
dt 92 o = 2mu 5/0 + (b - a) cos 0" ~2 _ cos 0- ~br ~gy~ 9y'~ 

+ (b-  a) sin r  sin 0"0  t ~  + ~ + R \COp 

- 4mu2o "2mu sin r I(a-b)(k +(o (~P~OY'f 

(13) 

+ ap/j j  

+ ep) j  

+ ~p) j ]  (is) 
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dt ~y--~ = 2m. Yo + (cos #s0 -  sin @. 0~) [0~o + ~ + R + ka~ a~o)j 
+ (a-  b)(cos ~- ~)- sin @ " 62 ) ]  

dOTu_2(,o_aO)[mu(OYf 0~~ <~zf) 2] 
dt 0~o \#z + R-~Z-z] + I~ 

+ 2(~o + bO) [m (oy'r a~o;) ~ (&0'r~ ~] 
u \#z + R Oz/ + /~ \Oz) J 

d dr. _ 2S: [(a~~ ~ (Oq"r]-']@ 
dt O@ L\~) + ka~) j (15) 

d aTu 
dt dO 

d aL 
dt 0~ 

0~[~ 2 {ay; 0 ' -2mu [ -a('~ Oz] +b('~ + R ~ ) ~  

+2'u [-a(~o-aO) (~J~)e+ b(~o+bO){Or 
kOz) j 

--2~[mu(t!f+t~r+aZ+bZ)+21u] 

+ 2m.(a- b)[-(J)o - 206) cos ~ + ( -  5io - 906) sin 0] 

Also from (14)" 

aTe_o, aTe_o, aTe_o, aTe=o, am~_ o 
OXo ~Yo OZo 0~o 00 

using (13) 

aT. aT~ aYq aT~ ay~ 
- -  . 3 [ -  - -  - -  

aO ah ao a9, aO 
aT.. . aT. a% aT. 

-- -20  ~ sin 0 +Yo~:-.ox, cos ~0-2o ~ cos 0 -90  ~ sin @ 

= 2mu.~b-a)(2 o cos 0+.9o sin 0)6-0(2o cos @+3~o sin 0) x 

x 

(16) 

Ocp + ~ + R  + \a~ a~)jj 

Dissipative Function 
Each damper will be assumed to generate a force proportional to its closing velocity. In this 
c a s e  : 

\Oz) + \ ~ )  I + t,~) + Vq') ] 
giving 
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OF 
02o 

OF 

8F 
0(9 

OF 2~ 0 [bHr (0lr"~ 2 (Ol,-~ 27 
aO =- \a U -- aHf \ o z / i  ] 

OF OF 
- OTo - 07, - o 

= Zo 2 H f \ o z /  + 2H, + 20 H r - aHf \Oz) j \Oz/ \ozj 3 

-- 2(9 IHf (Olf~ 2 (01r~27 \&p) + /4, \~-~) j 

[a (Olf~ 2 (Olr~27 
+ 20 2Hf \ 8 z /  + b2H' \8z} ] 

(17) 

Potential energy 
Angular displacements occur in the order 46 0, (p. The potential energy is the work done on 
the system in moving it from its datum position at static equilibrium, to a generally displaced 
one. Spring and gravitational forces only are included in the potential energy, and each spring 
is assumed linear. 

Spring compressions initially are Alf 
and Al, 

Further spring compressions are: 

starboard 

alf 01f 
front ( z o + h o - a O ) ~  z + q o ~  

rear (Zo + ho + bO) + (p 

front 
rear. 

port 

alf ~If 
(Zo + h o -  aO) ~ - ~ ~ 

alr ~lr 
(Zo + ho + bO) Yz - ~ aT 

Therefore : 

V = lkf [{(z o-}- ho-aO)81f t~lf }2 Yz + ~ ~ +Ate  - Al~ 

+ z o + h o - a O ) ~  z - q ) ~  + All Al 

+ �89 zo + ho + bO) C~--~ z + q~ ~ + Al, - Al 2 

+ Z o + h o + b O ) ~ -  ( p ~ +  Alr Al 2 -M=g(zo+ho) 

For static equilibrium: 

Olf al r 
2kfAlf ~z + 2krAft Oz = M=g 

and 

Thus 

ale ~l r 
2kf AIf ~z a = 2k r A I r ~zz b 

8V 8V 8V 
a x e -  8y o -  80 - 0 

OZo - 2Zo r \ o z ]  + k, \ a z ]  I + 2O k, \ a z /  - akr \a~) J 
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&o \?~oj \&o) j 

~ = 2Z 0 bk r - akf -]- 20 (~/f~2 (18) 

Equations of Motion 
Using (8), (9), (10), (15), (16), (17), and (18), taking into account the fact that the masses and 
inertias of the wheel assemblies are at least an order of magnitude less than those of the body 
and again neglecting second-order terms, the equations of motion are as follows: 

M=2o+2mu[22o+(b-a)(~, 2 cos 0 + ~  sin 0) ]=  Qxo 

Ms J)o + 2mu [2j)o + ( a -  b)(~) cos g, - r sin ~k)] = Q,o 

M=eo+2(eo-aO) [mo (OY" \ ~ + R  8zj + /~(~z0 2] 
_l_2(~,o_l_b0)[ m (~Y'r 0q)'r) 2 (~zr) 2] U\az +R~f +& 

-I-Z 0 [2Hf (~/f~2 (~/r',~2~ [bHr (Gq/r'~2 (Gq/f~2] \&)  +2H, \~7) J + 20 - aHf \&/ \&) J 

+ 2zo[ kf (~lf~ 2 {Olr~ 2] 
\oU + k, \~z) j 

\cgzJ -- akf \~zj J=Oz~ 

lit, (~?lf~ 2 {Ol'~ 2] 
\a~) + H, kay) J 

(<V (<? 
<('~e) -I- k r <0(/)) ] = Q~o 

/~=~}+2~} [mu(tg,+tg,+a2+b 2) + 2IJ +2mu(a-b)(f~o cos O-/~o sin 0)=  Q+ 

1,=(0-  (0~ - qo~) - I:=(q~r + (or 

+ 2m u _a(5o_aO ) (8Yi + R + + R 
\Oz Oz ) \ Oz 

+2Iu [-a(~o-aO) ( O-q~ b(zo + bO) t~z ) + \Oz J ] + I~st~(O-O~)+ I=fl(t2-C==~2 + 

+2_~ 0 [b Hr (~Ir~ 2 /elm 2 q <-~z) aHft-~z ) J 20 k 2 H f \ c z j  2 
/ al "~ 2q 

- + +b2Hrt~z) j 

[b {Sl'-] 2 (~1~2] [a2ke ,&] \ & j  j Qo. 
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, t v' 

x: / 

62 ' ~ X 4  

xo 
Figure 2. External forces and moments acting on the vehicle. 

vo 

O 

5. External Forces acting on the Vehicle 

Tyre and aerodynamic forces and moments are included in Qxo... Qo" Each generalised force 
is equal to the work done by these forces and moments in a virtual displacement fq, divided 
by 6q. 

In accordance with the usual description of tyre forces, each tyre is assumed to provide a 
rolling resistance (or tractive effort), X[... X~, along the intersection of the ground plane and 
the wheel plane, a sideforce, Y[... Y~, in the ground plane and normal to the rolling resistance, 
a vertical reaction, Z't ... Z~, normal to the ground plane, and a self-aligning moment, N1.../74. 
The wind forces Xw, Yw, Zw, and moments Lw, Mw, Nw, act along and about the axes OX1, 
OY1, OZ1, respectively (Fig. 1). 

For the purposes of describing the external forces, the rear wheel steer angles can be assumed 
negligible, and the difference between the front steer angles will be small, so that f~ = 3 2 -~-dr, 

Figure 2 is a diagrammatic representation of the forces. 
In a virtual displacement 6Xo, the work done is: 

8W = [(X; + X~) cos (~O + fr) + (X; + X,~ + Xw) cos ~k k(y;  + yd) sin (~ + fir) 

- (Y~+ Y~+ Yw) sin ~]fxo 

and thus 

6W 
Qxo - fxo - - -  = (x~ + x l )  cos (~ + 6,) + (x~ + x~  + Xw) cos 

- ( Y ; +  Y~) sin ( ~ + 6 f ) -  (Y~ + Y~+ Yw) sin ~k 

Similarly" 

Qyo = (X~ + X~) sin (~, + 6r) + (x~ + x~  + Xw) sin ~9 

+(rl  + r~) cos (~ + ~,) + (r~ + r~ + rw) cos 4, 
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~y~ ~y; 
Qzo : ( Y 1 -  Y2)~z  cOS~f-~-(Y~- Y~) ~z  -r ZW 

~y} 
+ (Zi - X;) &-z sin t~f 

ay~ ay; 
G = ( y ; + r ~ ) ~ c o s a f + ( r ~ + r ~ ) ~  + Lw 

a '  
X,~ oYf +(X~+ 2jOq~ sin6f 

(2o : - a [ ( Y; - Yi) cos 6f + (X i - X;) sin (Sf] ~zC~Y'~ + b( y~ _ yi) ~ f  z(~y'r 

+ ( -Zo  - R ) [ ( X [  +X; )  cos 6 f -  (Y~+ Yi) sin 6f+X; +X~] +M w 

Qo = a [(Y~ + Y~) cos 6f + (X; + X;) sin 6f] -b(Y~ + Y]~) 

+ to[(X; - X i )  cos 6f+ ( Y / -  Y;) sin (~fJ-X4-X;] 

+ N ~ + N 2 + N 3 + N ~ + N w  

Tyre Forces 
The forces generated by a particular tyre depend on slip angle, load, camber angle, and tractive 
effort. The last, like the applied steer angle, is a control input, but the other three are functions 
of the vehicle motion parameters. 

From (11): 

] 1 + ar + (~o- aO) ~ + 0 
cq = tan7 ~ L- 21"---~-tor----f 61 

with small terms omitted as described previously. 

cq = tan -1 21+tof(j - 62 

L : 
~3 = tan-  ~ ~ 3 

1 Y;1-b(J-(~~ Oq~ 
c~4=tan-  [ x l - ~ o ~  - 64 

and 

a3 = ~o ~ + (Zo + bO) ~z 

g(~r __ (Z 0 _~_ bO) O(~r 64 = ~o ~ ~z 

Substituting for 21 and 9~ from (12) gives' 

- 2 o sin ~ + 3~o cos ~b + ( zo -  aO) ay'f @'f ] ~+ 0~]_~ 
e~ = tan-1 

20 COS ~+3)0 sin O--toe ~ 
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c~2 = tan-1 

(X 3 = tan-1 

e4 = tan-  1 

. -  20 sin 0 + 3)0 cos ~ -  (20 - aO) @'f ay'f ]  Gj_<b : -z 

xo cos 0+3~o sin 0 + t o f 0  

- 2 o  sin 0+3~o cos 0 +  (2o+bO) Oy'r Oy'r] 
06r 06~ ~Tz + ~ ~o. _ cp - (% + bO) ; -r 

x o cos ~ + 3)o sin 0 -  to~ 0 ~ 0z 

- 20 sin 0 + 3)o cos 0 - (20 + bO) Oy'~ ~Y'r ] 
7 z  + ~ &o/ ,~<5, <7,5, 

, ,- J -~o + (zo+bO) 
x o cos 0+3?0 sin O+to~ 0 �9 ~ ~z 

To deduce expressions for the tyre vertical loads, the front starboard wheel is considered to 
undergo a virtual, vertical displacement 6/), (Fig. 3). After replacement of the wheel lateral 
cambering accelerations by inertia forces, in accordance with d'Alembert's Principle, the work 
done by the forces acting on the wheel assembly is equated to zero. 

INERTIA FORCE = J~m~u ~ 
SPRING AND DAMPER FORCE 

1 
v, 7' [ 14' v,o. 

Zi 
Figure 3. Forces and moments acting on a wheel. 

From (11), the lateral velocity of the wheel centre is 

Yl + at~ + (20 - aO) (~Y'f + R + + R 

= - 20 sin ~ + 3~o cos ~ + a~ + (20 - aO) (@'f + R + (o + R \Oz ) \ G  
Thus the lateral acceleration of the wheel centre is 

_(2o+~o~)sin~+(yo_2o~)COS~+a~j+(~o_aO)(O_y'f  Oq~'f~ i~['Oy~ Oq)'f~ \~z  + R ~ z )  + \~q) + Raqo) 

and the inertia force is 

e, I of Y, m<, ~ o + P o ~ ) ) s i n ~ + ( 2 o ~ - J ) o ) C O S ~ S - a ~ + ( a 0 - g o ) \ ~  z + g ~ - z / -  \ ~ + R  . 

Cambering velocity = (20- a0) + 4b ~4 ~ 
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Thus cambering acceleration = (Zo- aO) am'f am'r 
~-z + ~ am 

and inertia moment = /~ aO- Zo) ~ - 0 am J 

Therefore, the work done in a virtual displacement is: 

(-m,:,g-Z'~)@+ Z' @'f az lf+(z~176 gJeZ + m ~J-~z 6P 

, lQ alf - us [(~o- aO) ale + O @ 
k az &pJ az 

+ mu 15Co + 3)0#)) sin 0 + (2o@- J)o) cos #J-aft 

~-(aO~ ~o) (~@ 'e + R ~ ' f~  - ~{~Y-~'f + R ~'f )] ~ O-y~ 
\ oz oz / \ore om/3 [Oz + R 

+ lu (aO- ~o) _ ~ ~] a~'~ ~@:o. 

Dividing throughout by 6p, 
ay's [A aZs ale] alf - m . g - Z ' ~ +  Y; ~ z - ks l f+(zo+ho-aO)~z  + m aq)J 8~ 

_ n f  [(2o_aO) als alfl alf [( 
~z + 0 amJ ~z + m. 2o+3)o#/) sin ~#-a~ 

am )  am )l \az + R~z] - 0 + \am amJJ 

l .. o '  o L az az J + Iu aO-z~ - O am J az = " 

Similarly for the other wheels: 

ayf IA _~_ (z 0-~ ho_aO) al e alfl alf 
- mug - Z'2 + Y~ ~ z  - kf If -~z - m am_] a~ 

ale ale l ale 
- He 20 - aO) -~z - (9 am_] a~  

-mu [(2o+Yor sin @+ (2o@-Yo)cos O - a 6  

(Oi R aml) (@i avf]] am}] \~z + az]- (li\~ + R am/j PY} + R + (~o-aO) Laz az J 

- I~ 2 o - a O ) ~ -  z - 0 amj~z- z = 0 

- m u g - Z ' 3 +  Y ' ay'~ IA 3 -~z k~ lr + (zo + ho + bO ) al~_ 1 al~ 
- ~ J a ~  

I ~ a,~_]a,, - H, 2o + bO) + (9 - ~ j  ~z 

+mu [(~o+Por sin if+ (2or ff+bff 
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az J 6p 
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l 
\ Oz 8z ] - \ ~  + R 8q)/J Laz az_l 

[ 0# aq~; .. ~0, ae;  
+ Iu - (bO- fo) ~ z  - ~o ~ffz = 0  

ay'~ Id al~ 1 al, 
- m o g -  - k, + (z~ + h~ + bO) - 

- H~ I(~o + bO) al~ al,l 81, 

[(/~o + Yo#))sin ~ +  (2o~-J )o)cos  O + b 6  ~ m u 

', 
+ (fo + bO) ( ay', + R - 0 + R + 

\ az ~ ae J ] L az az ] 

-Iu f o + b O ) ~  - 0 ~ = 0 

Since these relationships for Z'I... Z~ contain Y;... Y#, which, in turn, depend on Z'I... Zk 
for their values, iteration is necessary to obtain accurate solutions for Y~... Y~. An obvious 
starting point for this procedure is the assumption that Z'~, etc. are the static wheel loads. 

For simplicity, it may be reasonable to assume that the inertia forces and moments are 
negligible compared with the tyre vertical and lateral forces. The resulting errors in the vertical 
loads would be expected to be of the order of ten percent of their values, which, in turn, would 
normally lead to errors in the lateral forces of only a few percent, on account of the comparative 
insensitivity of side force to vertical load, at normal toadings. 

The front wheels camber by virtue of being steered about a castored axis. For the starboard 
front wheel, the change in camber angle due to this effect is 

sin- 1 (sin e sin 61) 

and for the port front wheel 

sin- 1 (sin e sin 6z) 

Since e is invariably small, and since steer angles are also small under most circumstances of 
practical interest, these expressions can be approximated by e~l and e~ 2. Thus the wheel 
camber angles are given by: 

(P'I = (p,of + (zo_aO) aq~ ap'f 

ae'e 
q)i = --(,o;f+(aO--zo) ~-z -t- ~0 ~ -  + e(~ a 

~o'3 = ~o'o, + (Zo + bO) a('Otr 3q)'r 
~Z-Z + ~O a~ o 

8 '  , -e, a~o; 
q~, = - q~o,- (z0 + bO) ~ + ~o am 

Aerodynamic Forces 
The aerodynamic forces on a vehicle are primarily functions of the relative wind between car 
and air, and particularly of the incidence angle and the relative wind speed. In the simple 
case of a steady wind velocity v, at angle 7 to O'Xo, Fig. 4 shows the incidence angle. 
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Figure 4. The motions of the wind and the vehicle�9 
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Incidence angle = tan -1 3)I~ -_ Vv cosSin (7(7-0)]- @)J 

with relative wind speed [-{21 - v cos (7 - 0)} 2 + {3)1 - v sin (7-  @)}2]~. 

Substituting for 21 and 371 from (12), these expressions become : 

~ - 2 o  sin @+/9o cos @-v sin (V-O)] 
tan-1 ~ocos 0+3)0 sin @-v  co~ ( 7 - ~ J  

and 
�9 2 • [{20 cos @+3)0 sin @-v cos (7-@)}2+ { -20  sin @+3)0 cos @-v sin (7--0)} ]2 

In still air: 
1 [ - 2 o  sin @+3)o cos @~ 

incidence angle = tan- [ Xoo coss ~ - ~ o  s~n ~--_] 

relative wind speed = (22 + 3)g)~ 

6. Discussion 

The main advantages of this treatment of vehicle motions over its predecessors are that the 
inertia contributions from the unsprung masses are properly accounted for, and the coupling 
between pitch and bounce, normally considered to be "ride" motions and "handling" motions, 
is realistically represented, without the logical complications which arise when the "roll axis" 
concept is used to describe the rolling motions of the sprung mass. 

Coupling between ride and handling motions occurs since the ride motions influence the 
vertical loading, the sideslipping, and the cambering of the tyres, thus affecting the tyre side 
forces, and since these forces themselves, through suspension "jacking" effects, cause pitch and 
bounce motions of the sprung mass. The adequate representation of these effects will make 
possible, in particular, a better understanding of suspension system behaviour as it affects 
the straight running and transient handling response characteristics of rigid bodied vehicles. 

Use of the model to represent actual vehicles will possibly require the addition of anti-roll 
bars, and the substitution of non-linear spring and damper characteristics for the linear ones 
assumed. These are relatively simple matters and have been omitted for the sake of simplicity. 
In the latter case kl, H1, etc. must be written as appropriate functions of the system displace- 
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ments and velocities, instead of being treated as constants. The inclusion of a non-flat road 
surface requires reasonably simple modifications to the unsprung mass kinetic energy, the 
dissipative function, and the potential energy, while including the tyre vertical flexibilities 
involves further additions to the potential energy and differentiations to obtain the separate 
wheel mass equations of motion. Road surface contours leading to large sprung mass vertical 
velocities or large roll or pitch angles can not easily be dealt with. 

The solution of the equations of motion with realistic tyre forces included will require digital 
or hybrid computation in view of the large number of non-linear functions involved and the 
iteration required to derive the wheel load values. 

7. Conclusion 

It is concluded that a useful addition to automobile handling simulation techniques has 
been achieved. 
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